Chad Vale Primary School Calculation Policy

The understanding of Place Value is fundamental if children are to expected to add, subtract, multiply or divide

Ordering numbers to 10

Ordering numbers to 20

Ordering numbers to 50

Ordering numbers to 100

0		2	3	4	5	6	7	8	9
10	11	12		14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34		36	37	38	39
40	41	42		44	45	46	47	48	49
50	51	52	53	54	55	56	57		59
60	61	62	63	64	65	66	67	68	69
70	71	72	73		75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99

Ordering numbers to 1000 and beyond

Once children can order two-digit numbers, they should be encouraged to partition

Partitioning (splitting two-digit numbers)
Using concrete materials e.g. cubes

Partitioning (splitting two-digit numbers)
Using drawings in books

Addition (using objects)
Adding groups together
$6+3=9$

Addition (using a FIXED number line)
Counting forwards in ones
$7+4=11$

Addition (using an EMPTY number line)
Counting in ones (extend to jumping in larger groups)

$$
13+6=19
$$

Mental Methods

Once children are confident at partitioning, particularly in KS2, they should be encouraged to develop mental methods. Although this would be written at first, the number line should form part of a mental strategy

Addition (using the number line)
Partitioning (splitting two-digit numbers)

Addition (using the number line)
Partitioning (splitting two-digit numbers)
$36+25=61$

Written Methods

At first a visual representation should be used to support written addition. In order to do this, children should have a strong understanding of PLACE VALUE

Addition supported by visual maths

Using concrete or visual representations

Addition (Adjusting)

This works by adjusting 29 and adding 30 instead. We then subtract 1

$$
56+29=85
$$

Addition (partitioning)

$$
342+235=577
$$

Addition (bridging the tens)

Addition (the column method)
Using visual maths if required

$T U$
26
+15
41
1

Addition (adding with hundreds)

Addition (bridging the tens)

Addition (The Column Method)

$$
\begin{array}{r}
H \quad T \\
13 \\
+12 \\
\hline 26
\end{array}
$$

Subtraction

Subtraction (using objects)
Taking away from a group

Subtraction (using a FIXED number line)
Counting back in ones

Subtraction (using an EMPTY number line)
Counting back in ones (extend to jumping in larger groups)

Mental Methods

Once children are confident at partitioning, particularly in KS2, they should be encouraged to develop mental methods. Although this would be written at first, the number line should form part of a mental strategy

Subtraction using the number line
Partitioning (splitting two-digit numbers)

Written Methods

At first a visual representation should be use to support written subtraction. In order to do this, children should have a strong understanding of PLACE VALUE

Subtraction supported by visual maths

Subtraction using the number line
Partitioning (splitting two-digit numbers)

Subtraction

Mental Methods (continued)

Subtraction (by adjusting)

This works by adjusting 29 and subtracting 30 instead. We then add 1

Subtraction (by addition)

This method works by partitioning. Count-on in steps from
the smallest number to the largest

Subtraction (by addition)
This method works by partitioning. Count-on in steps from the smallest number to the largest

Written Methods (continued)

Subtraction (crossing the tens)

Subtraction (decomposition)
Supported by visual maths

Subtraction (decomposition)

Subtraction (crossing the tens)

Subtraction (decomposition)

Subtraction (decomposition)

Multiplication

Repeated Addition (using objects)

Adding groups together
$4 \times 2=8$

Repeated Addition (using symbols)

Adding groups together

Repeated Addition (using symbols)
Adding groups together
$4 \times 2=8$

Splitting

At this point children should be learning their times-tables and taught Splitting. This will support their understanding of the Grid Method.
Example: $8 \times 5=$
$5 \times 5=$ \qquad

Grid Method
May be used to develop understanding of formal methods of written multiplication
$12 \times 8=96$

\mathbf{X}	$\mathbf{1 0}$	$\mathbf{2}$	
8	80	16	$(80+16)=96$

Formal Methods of Multiplication

Extended Column Multiplication

Division

Splitting (using objects)
How many groups are there?
$6 \div 2=3$

Division as 'Grouping' (using symbols)

How many groups are there?

Division as 'Sharing' (using symbols)
How many are in each?
$6 \div 2=3$

$7 \div 2=3$ r 1

$$
14 \div 4=3 r 2
$$

Bus Shelter

Children should have a strong understanding of Place Value

$729 \div 4=182$ r 2

$H: 7 \div 4=1 r 3$
$\mathrm{T}: 32 \div 4=8$
$U: \quad 9 \div 4=2 r 2$
N.B. Methods to be used when teaching decimal and fractional remainders.

$288 \div 12=24$	$345 \div 13=26 \mathrm{r} 7$
24	26
$1 2 \longdiv { 2 8 8 }$	$1 3 \longdiv { 3 4 5 }$
- 240 (20×12)	- $2600(\underline{20 \times 13)}$
048	085
$0488(4 \times 12)$	- 078 ($6 \times 13)$
000	007

Long Division

$322 \div 14=23$

14 \begin{tabular}{rrr}
3 \& 2 \& 2

\hline \& 2 \& 8

\hline \& 4 \& 2

\hline

4 \& 2

\hline
\end{tabular}

$432 \div 15=28 \mathrm{r} 12$				
15	4	3		
- 30				
132				
	1	2		
	0	1		

